DAPHabitat System

ENVIRONMENTAL PRODUCT DECLARATION

www.daphabitat.pt

[according to ISO 14025, EN 15804:2012+A1:2013 and EN 15942]

Slabs for façade claddings and for interior claddings and flooring in natural

semi-rijo limestone: Branco Real, Branco do Mar, Branco Snow, Branco

Imperial, Branco Ártico and Branco Oriental

ISSUE DATE: 17/01/2022

VALID UNTIL: 16/01/2027

SOLANCIS — SOCIEDADE EXPLORADORA DE PEDREIRAS, S.A.

VERSION 1.1. EDITION JULY 2015

Index

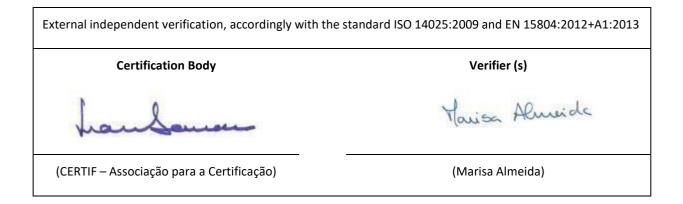
GENERAL INFORMATION	1
1.1. ТНЕ DAPHABITAT SYSTEM	1
1.2. EPD OWNER	1
1.3. INFORMATION CONCERNING THE EPD	2
1.4. DEMONSTRATION OF THE VERIFICATION	2
1.5. EPD REGISTRATION	
1.6. PCR OF REFERENCE	
1.7. INFORMATION CONCERNING THE PRODUCT/PRODUCT CLASS	4
2. ENVIRONMENTAL PERFORMANCE OF THE PRODUCT	6
2.1. CALCULATION RULES OF THE LCA	6
2.1.1. FLOW DIAGRAM OF INPUT AND OUTPUT OF THE PROCESSES	7
2.1.2. DESCRIPTION OF THE SYSTEM BOUNDARIES	
2.2. PARAMETERS DESCRIBING ENVIRONMENTAL IMPACTS	9
2.3. PARAMETERS DESCRIBING RESOURCE USE	9
2.4. OTHER ENVIRONMENTAL INFORMATION DESCRIBING DIFFERENT WASTE CATEGORIES	10
2.5. OTHER ENVIRONMENTAL INFORMATION DESCRIBING OUTPUT FLOWS	10
3. SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION	11
3.1. Additional environmental information about the release of dangerous substances	11
3.2. Certifications	11
REFERENCES	12

GENERAL INFORMATION

1.1. The DAPHabitat System

Program operator:	Associação Plataforma para a Construção Sustentável <u>www.centrohabitat.net</u> <u>centrohabitat@centrohabitat.net</u>	CentroHabitat Plataforma para a Construção Sustentável
Address:	Departamento Engenharia Civil Universidade de Aveiro 3810-193 Aveiro	
Email address:	deptecnico@centrohabitat.net	
Telephone number:	(+351) 234 401 576	
Website:	www.daphabitat.pt	
Logo:		

1.2. EPD owner


Name of the owner:	SOLANCIS — Sociedade Exploradora de Pedreiras, S.A.							
Production site:	Rua da Sindocal, 22, Casal do Carvalho, 2475-016 – Benedita- Portugal							
Address (head office):	ua da Sindocal, 22, Casal do Carvalho, 2475-016 – Benedita- Portugal							
Telephone:	Eng.º Marco Aniceto: +351 262 925 080							
E-mail:	marco.aniceto@solancis.com							
Website:	http://www.solancis.com							
Logo:								
Information concerning the applicable management Systems:	SOLANCIS has an integrated quality, environment, health and safety management system implemented, following the ISO 9001:2015, EN ISO 14001:2015 and ISO 45001:2018 standards. This management system meets the requirements of the StonePT (Premium) and StonePT – Green specifications for the Extraction + Primary Transformation + Secondary Transformation activities. All its products thus benefit from the procedures associated with the quality and environment control system.							
Specific aspects regarding the production:	SIC Code 23701 – Manufacture of marble, and of similar stones, articles							
Organization's environmental policy:								

1.3. Information concerning the EPD

Authors:	CERIS - Civil Engineering Research and Innovation for Sustainability, José Dinis Silvestre Civil Engineering Research ond Innovation for Sustainability
Contact of the authors:	Av. Rovisco Pais 1049-001 Lisboa Phone contact: +351 218 419 709; E-mail: jose.silvestre@tecnico.ulisboa.pt
Emission date:	17/01/2022
Registration date:	08/03/2022
Registration number:	DAP 001:2022
Valid until:	16/01/2027
Representativity of the EPD (location, manufacturer, group of manufacturers):	This is the cradle-to-gate EPD of one (1) product produced in one (1) industrial unit belonging to a single producer (SOLANCIS — Sociedade Exploradora de Pedreiras, S.A.).
Where to consult explanatory material:	www.solancis.com
Type of EPD:	

1.4. Demonstration of the verification

1.5. EPD Registration

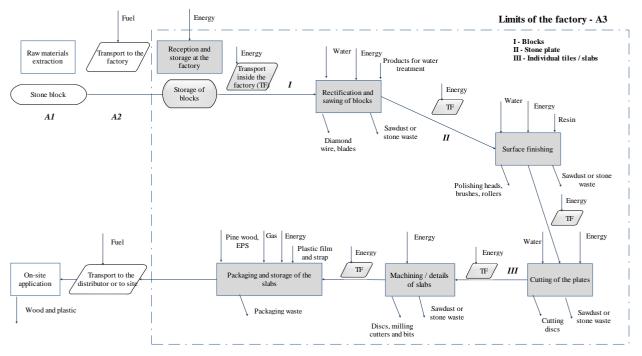
Program Operator
VidorAtteriers
(Plataforma para a Construção Sustentável)

1.6. PCR of reference

Name:	 PCR: Basic module for construction products and services PCR: Wall coverings PCR: Floor coverings
Emission date:	1. November 2020 2. November 2020 3. November 2020
Number of registration on the data base:	1. RCP-mb001 2. RCP002:2014 3. RCP001:2014
Version:	1. Version 2.1 2. Version 1.1 3. Version 1.1
Identification and contact of the coordinator (s):	 PCR: basic module for construction products and services Marisa Almeida <u>marisa@ctcv.pt</u> Luís Arroja <u>arroja@ua.pt</u> José Silvestre <u>jds@civil.ist.utl.pt</u> PCR: Wall coverings Luís Arroja arroja@ua.pt Marisa Almeida marisa@ctcv.pt PCR: Floor coverings Luís Arroja arroja@ua.pt Marisa Almeida marisa@ctcv.pt PCR: Floor coverings Luís Arroja arroja@ua.pt Marisa Almeida marisa@ctcv.pt
Identification and contact of the authors:	 PCR: basic module for construction products and services Marisa Almeida marisa@ctcv.pt Luis Arroja arroja@ua.pt José Silvestre jds@civil.ist.utl.pt Fausto Freire Cristina Rocha Ana Paula Duarte Ana Cláudia Dias Helena Gervásio Victor Ferreira Ricardo Mateus António Baio Dias PCR: Wall coverings Marisa Almeida marisa@ctcv.pt Luís Arroja arroja@ua.pt Ana Cláudia Dias acdias@ua.pt PCR: Floor coverings Marisa Almeida marisa@ctcv.pt Luís Arroja arroja@ua.pt Ana Cláudia Dias acdias@ua.pt
Composition of the Sector Panel:	 RCP: Wall coverings RMC - Revestimentos de Mármore Compactos, S.A. APICER – Associação Portuguesa da Indústria de Cerâmica Sonae Indústria, SGPS, S.A. Gyptec Ibérica - Gessos Técnicos, S.A. RCP: Floor coverings RMC - Revestimentos de Mármore Compactos, S.A. Dominó – Indústrias Cerâmicas, S.A. Dominó – Indústrias Cerâmicas, S.A. MAS – Manuel Amorim da Silva, Lda. Sonae Indústria, SGPS, S.A. APICER – Associação Portuguesa da Indústria de Cerâmica
Consultation period:	1. 18/11/2015 - 18/01/2016 2. 12/08/2013 - 30/11/2013 3. 01/08/2013 - 30/11/2013
Valid until:	 December of 2022 January of 2022 January of 2022

1.7. Information concerning the product/product class

Illustration of the product:				
		_		
				TF
				· ·
			<u></u>	136
		30		
Brief	The product corresponds to slabs for	or facade claddings. a	and for interior claddings an	d flooring. in natural <i>semi</i>
description of	limestone. This limestone has white	, ,	•	
the product:	medium size. The production of the			
	These slabs are available in the maximum		,200x2,000) mm and, usually	, in the following thickness
	Façade and interior wall claddings			
	Interior flooring with low circulation	on: 10 to 30 mm.		
	Since the production process is the		-	-
	Since the production process is the thickness, it is possible to transform account the density of this product of Table 1: Conversion factor to app	n the results of this El (2.350 kg/m³), using a	PD for 1 m ² of slab with the conversion factor, as indicated	referred thickness, taking ted in Table 1.
	thickness, it is possible to transform account the density of this product	n the results of this El (2.350 kg/m ³), using a ly to the EPD results f values presen	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD)	referred thickness, taking ted in Table 1.
	thickness, it is possible to transform account the density of this product	n the results of this El (2.350 kg/m³), using a ly to the EPD results f	PD for 1 m ² of slab with the conversion factor, as indicator 1 m ² of slab with different	referred thickness, taking ted in Table 1.
	thickness, it is possible to transform account the density of this product	n the results of this El (2.350 kg/m ³), using a ly to the EPD results fr values presen Thickness of the slab with 1 m ²	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied	referred thickness, taking ted in Table 1.
	thickness, it is possible to transform account the density of this product	n the results of this El (2.350 kg/m ³), using a ly to the EPD results fr values presen Thickness of the slab with 1 m ²	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235	referred thickness, taking ted in Table 1.
	thickness, it is possible to transform account the density of this product	n the results of this El (2.350 kg/m ³), using a ly to the EPD results fr values presen Thickness of the slab with 1 m ²	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied	referred thickness, taking ted in Table 1.
	thickness, it is possible to transform account the density of this product (Table 1: Conversion factor to app	n the results of this El (2.350 kg/m ³), using a ly to the EPD results f values presen Thickness of the slab with 1 m ² 10 mm 20 mm 30 mm 40 mm	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094	referred thickness, taking ted in Table 1. thickness (in relation to th
Aain technical	thickness, it is possible to transform account the density of this product of Table 1 : Conversion factor to app The main physical and technical cha	n the results of this El (2.350 kg/m ³), using a ly to the EPD results fr values presen Thickness of the slab with 1 m ² 10 mm 20 mm 30 mm 40 mm racteristics of the pro	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table	referred thickness, taking ted in Table 1. thickness (in relation to th
haracteristics	thickness, it is possible to transform account the density of this product (Table 1: Conversion factor to app	n the results of this El (2.350 kg/m ³), using a ly to the EPD results fr values presen Thickness of the slab with 1 m ² 10 mm 20 mm 30 mm 40 mm racteristics of the pro	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table	referred thickness, taking ted in Table 1. thickness (in relation to th
haracteristics	thickness, it is possible to transform account the density of this product of Table 1 : Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product).	n the results of this El (2.350 kg/m ³), using a ly to the EPD results fr values presen Thickness of the slab with 1 m ² 10 mm 20 mm 30 mm 40 mm racteristics of the pro on the most recent te	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table echnical sheet of the manufa	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these cturer for each application
haracteristics	thickness, it is possible to transform account the density of this product of Table 1 : Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product).	n the results of this El (2.350 kg/m ³), using a ly to the EPD results find values presen Thickness of the slab with 1 m ² 10 mm 20 mm 40 mm racteristics of the pro on the most recent te Physical and technica	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.035 0.094 duct are presented in Table a echnical sheet of the manufa	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these icturer for each application
haracteristics	thickness, it is possible to transform account the density of this product of Table 1 : Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product).	n the results of this El (2.350 kg/m ³), using a ly to the EPD results fi values presen Thickness of the slab with 1 m ² 10 mm 20 mm 30 mm 40 mm racteristics of the pro on the most recent te Physical and technica Pe	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table echnical sheet of the manufa	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these cturer for each application
haracteristics	thickness, it is possible to transform account the density of this product of Table 1: Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product). <u>Table 2:</u>	n the results of this El (2.350 kg/m ³), using a ly to the EPD results fi values presen Thickness of the slab with 1 m ² 10 mm 20 mm 30 mm 40 mm racteristics of the pro on the most recent te Physical and technica Pe	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.035 0.094 duct are presented in Table echnical sheet of the manufa I characteristics of the produ- rformance in accordance with EN 12058 Pelsparite Limestone	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these icturer for each application Ict Harmonized
haracteristics	thickness, it is possible to transform account the density of this product of Table 1: Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product). 	n the results of this El (2.350 kg/m ³), using a ly to the EPD results fi values presen Thickness of the slab with 1 m ² 10 mm 20 mm 30 mm 40 mm racteristics of the pro on the most recent te Physical and technica Pe	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table a echnical sheet of the manufa I characteristics of the produ- rformance in accordance with EN 12058 Pelsparite Limestone Mean – 2,350 kg/m ³	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these icturer for each application Ict Harmonized technical standard
haracteristics	thickness, it is possible to transform account the density of this product of Table 1 : Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product). <u>Table 2:</u> <u>Essential character</u> <u>Petrographic description</u>	n the results of this El (2.350 kg/m ³), using a ly to the EPD results find values presen Thickness of the slab with 1 m ² 10 mm 20 mm 30 mm racteristics of the pro on the most recent te Physical and technica	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table a echnical sheet of the manufa I characteristics of the produ- rformance in accordance with EN 12058 Pelsparite Limestone Mean – 2,350 kg/m ³ Mean – 11.5 MPa	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these icturer for each application Ict Harmonized technical standard EN 12407
haracteristics	thickness, it is possible to transform account the density of this product of Table 1 : Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product). <u>Table 2:</u> <u>Essential character</u> <u>Petrographic description</u>	n the results of this El (2.350 kg/m ³), using a ly to the EPD results fi values presen Thickness of the slab with 1 m ² 10 mm 20 mm 30 mm 40 mm racteristics of the pro on the most recent te Physical and technica ristic Pe	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table echnical sheet of the manufa l characteristics of the produ- rformance in accordance with EN 12058 Pelsparite Limestone Mean – 2,350 kg/m ³ Mean – 11.5 MPa wer expected value – 8.3 MPa	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these icturer for each application Ict Harmonized technical standard EN 12407
haracteristics	thickness, it is possible to transform account the density of this product of Table 1 : Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product). Table 2 : Essential character Petrographic description Apparent density Flexural strength	n the results of this El (2.350 kg/m ³), using a ly to the EPD results f <u>values presen</u> Thickness of the slab with 1 m ² <u>10 mm</u> <u>20 mm</u> <u>30 mm</u> 40 mm racteristics of the pro on the most recent te <u>Physical and technica</u> ristic Pe Lo	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table echnical sheet of the manufa characteristics of the produ- rformance in accordance with EN 12058 Pelsparite Limestone Mean – 2,350 kg/m ³ Mean – 11.5 MPa wer expected value – 8.3 MPa ndard deviation – 1.7 MPa	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these icturer for each application ict Harmonized technical standard EN 12407 EN 1936
haracteristics	thickness, it is possible to transform account the density of this product of Table 1: Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product). <u>Table 2:</u> <u>Essential character</u> <u>Petrographic description</u> <u>Apparent density</u>	n the results of this El (2.350 kg/m ³), using a ly to the EPD results f <u>values presen</u> Thickness of the slab with 1 m ² <u>10 mm</u> <u>20 mm</u> <u>30 mm</u> 40 mm racteristics of the pro on the most recent te <u>Physical and technica</u> ristic Pe Lo	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table echnical sheet of the manufa l characteristics of the produ- rformance in accordance with EN 12058 Pelsparite Limestone Mean – 2,350 kg/m ³ Mean – 11.5 MPa wer expected value – 8.3 MPa	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these icturer for each application ict Harmonized technical standard EN 12407 EN 1936
haracteristics	thickness, it is possible to transform account the density of this product of Table 1 : Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product). <u>Table 2:</u> <u>Essential character</u> <u>Petrographic description</u> <u>Apparent density</u> Flexural strength Water absorption at	n the results of this El (2.350 kg/m ³), using a ly to the EPD results f <u>values presen</u> Thickness of the slab with 1 m ² <u>10 mm</u> <u>20 mm</u> <u>30 mm</u> 40 mm racteristics of the pro on the most recent te <u>Physical and technica</u> ristic Pe Lo	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table echnical sheet of the manufa l characteristics of the produ- rformance in accordance with EN 12058 Pelsparite Limestone Mean – 2,350 kg/m ³ Mean – 11.5 MPa wer expected value – 8.3 MPa ndard deviation – 1.7 MPa imum expected value – 6.9	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these icturer for each application ict Harmonized technical standard EN 12407 EN 1936 EN 12372
haracteristics	thickness, it is possible to transform account the density of this product of Table 1 : Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product). Table 2: Essential character Petrographic description Apparent density Flexural strength Water absorption at pressure	n the results of this El (2.350 kg/m ³), using a ly to the EPD results f values presen Thickness of the slab with 1 m ² <u>10 mm</u> <u>20 mm</u> <u>30 mm</u> 40 mm racteristics of the pro on the most recent to Physical and technica ristic Pe Lo	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table echnical sheet of the manufa characteristics of the produ- rformance in accordance with EN 12058 Pelsparite Limestone Mean – 2,350 kg/m ³ Mean – 11.5 MPa wer expected value – 8.3 MPa imum expected value – 6.9 % Class A1 aximum expected value –	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these icturer for each application <u>act</u> Harmonized technical standard EN 12407 EN 1936 EN 12372 - EN 13755
Aain technical haracteristics f the product:	thickness, it is possible to transform account the density of this product of Table 1 : Conversion factor to app The main physical and technical cha characteristics should be confirmed and geometry of the product). Table 2 : Essential character Petrographic description Apparent density Flexural strength Water absorption at pressure Reaction to fire	n the results of this El (2.350 kg/m ³), using a ly to the EPD results f values presen Thickness of the slab with 1 m ² <u>10 mm</u> <u>20 mm</u> <u>30 mm</u> 40 mm racteristics of the pro on the most recent to Physical and technica ristic Pe Lo	PD for 1 m ² of slab with the conversion factor, as indicat or 1 m ² of slab with different ted in this EPD) Factor to be applied 0.0235 0.047 0.0705 0.094 duct are presented in Table echnical sheet of the manufa l characteristics of the produ- rformance in accordance with EN 12058 Pelsparite Limestone Mean – 2,350 kg/m ³ Mean – 11.5 MPa wer expected value – 8.3 MPa ndard deviation – 1.7 MPa imum expected value – 6.9 % Class A1	referred thickness, taking ted in Table 1. thickness (in relation to th 2 (average values – these icturer for each application ict Harmonized technical standard EN 12407 EN 1936 EN 12372 EN 13755 EN 13501-1


	Breaking load at a dowel hole (d=40 mm)	Mean – 1850 N Lower expected value – 1500 N Standard deviation – 150 N	EN 13364
	Flexural strength before and after 56 freeze-thaw cycles – in normal conditions	Mean value before – 11.6 MPa Mean value after – 8.8 MPa	EN 12371
	Abrasion resistance	Maximum expected value – 31.5 mm	EN 14157
	Slip resistance (Finish: Sawn) Dry conditions Wet conditions	Mean – 50 SRV Mean – 44 SRV	CEN/TS 16165
Description of the products' application:	Because of their low hardness, the main applicatio claddings, capping and interior flooring with low ci		façade, interior wall
Reference service life:	Not specified		
Placing on the market / Rules of application in the market / Technical rules of the product:	 Decision No. 768/2008 / EC of the Europear Regulation (EC) No 764/2008 of the Europear Regulation (EC) No 765/2008 of the Europea Regulation (EU) No 305/2011 of the Europea amendments. Technical Product Standards: EN 1469:2015: Natural stone products – S EN 12057:2015: Natural stone products – EN 12058:2004: Natural stone products – 	an Parliament and of the Council of 9 an Parliament and of the Council of 9 an Parliament and of the Council of 9 Slabs for cladding - Requirements; Modular Tiles - Requirements;	July 2008 July 2008 March 2011 and its
Quality control:	Quality control assured in accordance with the standards of the product.	integrated quality management sys	tem and with the technical
Special delivery conditions:	Not applicable		
Components and substances to declare:	Not applicable		
History of the LCA studies:	-		

2. ENVIRONMENTAL PERFORMANCE OF THE PRODUCT

2.1. Calculation rules of the LCA

Declared unit:	One tonne (1 ton) of slabs for façade claddings, and for interior claddings and flooring, in natural <i>semi-rijo</i> limestone, with a density of 2,350 kg/m ³ , packaging included.
Functional unit:	-
System boundaries:	EPD from cradle-to-gate
Criteria for the exclusion:	The following processes were not considered in this study, since they meet the cut-off criteria of 1% use of renewable and non-renewable primary energy and 1% of the total input mass of the unit process where they occur, with a maximum of 5% energy and mass use in the considered stages (A1-A3):
	 Construction of industrial infrastructures, manufacture and exchange of equipment and machinery; Impacts of infrastructure (vehicle manufacturing, road maintenance) associated with the transport of pre-products and raw materials; Transport of small consumables to the industrial unit; Other negligible flows, considering their contribution below the cut-off criteria.
Assumption and limitations:	This EPD represents one (1) product that is produced in one (1) manufacturing unit and may have different thicknesses and finishing.
Quality and other characteristics about the information used in the LCA:	Production data was collected for the year of 2018, from internal and official records of the production plant and is according to with the reality. Generic data used belongs to Ecoinvent, ELCD and Simapro industrial database (Industry data 2.0), and meets the quality criteria (age, geographical and technology coverage, plausibility, etc.) for generic data.
Allocation rules:	In the blocks extraction stage from all quarries, the specific consumption of electricity and oil in 2018 was considered, making a mass allocation between the blocks transported to the plant and the material not used for block and used as raw material for the lime industry or sold for other uses. The manufacturing plant where these natural stone slabs are produced also produces other products, namely curbs. Taking it into account, an allocation methodology was used to define which input and output flows associated only to the production of the natural stone slabs being studied.
Comparability of EPD for construction products:	The EPD of construction products and services cannot be comparable in case they are not produced according to EN 15804 and EN 15942 and according to the comparability conditions determined by ISO 14025.

2.1.1. Flow diagram of input and output of the processes

Figure 1. Life cycle stages of natural stone slabs from Solancis

The following paragraphs describe the life cycle stages studied for the development of this EPD.

Upon arrival at the factory, limestone blocks are stored. The slabs' production process starts in the Cutting Machines through the sawing process (which can be preceded by the rectification). Diamond saws laminate the blocks to the required thickness, resulting in several stone plates.

After measuring the thickness of the plates, they are introduced in the polisher. The stone receives here, through friction, the desired finishes (polished, sawn, hammered, sandblasted or aged, as tiles are to be visible by the inside or outside). Next is the cutting process, which turns them into individual tiles / slabs.

The modelling of the pieces into more complex formats is (machining / details) done in CNC (Computer Numerical Control). Following labelling and inspections, the slabs are finally packed in wooden structures (wrapped in plastic film and wrapped in a plastic strap, with expanded polystyrene – EPS as protection elements of the slabs) and stored according to the placement plans, the form of transport and the destination.

Transport to the construction site or the distributor and the application on site are outside of the boundaries of this EPD.

2.1.2. Description of the system boundaries

(\checkmark = included; \times = module not declared)

Pro	DUCT ST	TAGE	CONSTR PROCES		Use stage e						END OF LIFE STAGE			BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY		
Raw material supply	Transport	Manufacturing	Transport	Construction installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-constructions, demolition	Transport	Waste processing	Disposal	Re-use, recovery, recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
~	~	~	×	×	×	×	×	×	×	×	×	×	×	×	×	×

2.2. Parameters describing environmental impacts

		Global warming potential; GWP	warming the potential of potential; stratospheric soil and		Eutrophication potential, EP	Formation potential of tropospheric ozone, POCP	Abiotic depletion potential for non- fossil resources	Abiotic depletion potential for fossil resources	
		kg CO₂ equiv.	kg CFC 11 equiv.	kg SO₂ equiv.	kg (PO₄)³- equiv.	kg C₂H₄ equiv.	kg Sb equiv.	MJ, P.C.I.	
Raw material supply	A1	4.16E+00	5.18E-07	3.30E-02	4.96E-03	1.02E-03	1.13E-06	5.39E+01	
Transport	A2	9.50E-01	1.92E-09	4.26E-03	9.72E-04	3.02E-04	3.77E-08	1.33E+01	
Manufacturing	A3	5.89E+01	5.89E+01 3.22E-06		9.02E-02	2.27E-02	2.31E-04	7.91E+02	
Total	Total	6.41E+01	3.74E-06	4.59E-01	9.62E-02	2.41E-02	2.32E-04	8.58E+02	
LEGEND:									

Durd a

Product stage

NOTES: P.C.I. – Low Heating Value (LHV). Units expressed per declared unit (1 ton).

2.3. Parameters describing resource use

		Primary energy							Secondary materials and fuels, and use of water			
		EPR	RR	TRR	EPNR	RNR	TRNR	MS	CSR	CSNR	Net use of fresh water	
		МЈ, Р.С.І.	МЈ, Р.С.І.	МЈ, Р.С.І.	МЈ, Р.С.І.	МЈ, Р.С.І.	МЈ, Р.С.І.	kg	МЈ, Р.С.І.	MJ, P.C.I.	m³	
Raw material supply	A1	8.88E+00	0.00E+00	8.88E+00	5.98E+01	0.00E+00	5.98E+01	0.00E+00	0.00E+00	0.00E+00	4.51E-02	
Transport	A2	1.51E-02	0.00E+00	1.51E-02	1.42E+01	0.00E+00	1.42E+01	0.00E+00	0.00E+00	0.00E+00	8.48E-05	
Manufacturing	A3	2.10E+02	8.32E-02	2.10E+02	8.65E+02	5.24E+01	9.17E+02	0.00E+00	0.00E+00	0.00E+00	2.01E+00	
Total	Total	2.18E+02	8.32E-02	2.18E+02	9.39E+02	5.24E+01	9.91E+02	0.00E+00	0.00E+00	0.00E+00	2.06E+00	

LEGEND:

Product stage

EPR = use of renewable primary energy excluding renewable primary energy resources used as raw materials;

RR = use of renewable primary energy resources used as raw materials;

TRR = total use of renewable primary energy resources (EPR + RR);

EPNR = use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials;

RNR = use of non-renewable primary energy resources used as raw materials;

TRNR = total use of non-renewable primary energy resources (EPRN + RNR);

MS = use of secondary material;

CSR = use of renewable secondary fuels;

CSNR = use of non-renewable secondary fuels.

Net use of fresh water = net use of fresh water.

NOTE: Units expressed per declared unit (1 ton).

2.4. Other environmental information describing different waste categories

		Hazardous waste disposed	Non-hazardous waste disposed	Radioactive waste disposed	
		kg	kg	kg	
Raw material supply	A1	9.42E-05	1.16E-02	2.93E-04	
Transport	A2	0.00E+00	1.18E-06	0.00E+00	
Manufacturing	A3	4.20E-04	1.25E+02	1.67E-03	
Total	Total	5.14E-04	1.25E+02	1.97E-03	
LEGEND: Product stage NOTE: Units expressed per declared unit (1 ton).					

2.5. Other environmental information describing output flows

Parameters	Units*	Results		
Components for re-use	kg	0.00E+00		
Materials for recycling	kg	5.44E+00		
Radioactive waste disposed	kg	0.00E+00		
Materials for energy recovery	kg	1.33E-02		
Exported energy	MJ by energy carrier	0.00E+00		
* expressed per declared unit (1 ton)				

3. SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION

This EPD evaluates only the production stage of the natural stone slabs from Solancis, integrating stages A1 to A3. Thus, the following scenarios of the construction stage (modules A4 and A5), stage of use (B1 to B7) and end of life stage (C1 to C4), are not applicable.

3.1. Additional environmental information about the release of dangerous substances

No tests related to the release of dangerous substances or equivalent were carried out. There are no known toxic effects of this product. Due to its properties, no danger to the environment is expected. Natural stone slabs are considered an inert product, non-biodegradable.

3.2. Certifications

SOLANCIS — Sociedade Exploradora de Pedreiras, S.A. has a management system that meets the requirements of the StonePT (Premium) specification for the Extraction + Primary Transformation + Secondary Transformation activities, as audited and verified by APCER (Certificate of Conformity n.º 11/2020 valid until 15/03/2023) and that that meets the requirements of the StonePT– Green specification for the Extraction + Primary Transformation + Secondary Transformation + Secondary Transformation activities, as audited and verified by APCER (Certificate of Conformity n.º 11/2020 valid until 15/03/2023) and that that meets the requirements of the StonePT– Green specification for the Extraction + Primary Transformation + Secondary Transformation activities, as audited and verified by APCER (Certificate of Conformity n.º 11/2026V valid until 15/03/2023).

REFERENCES

- ✓ CEN/TR 15941:2014 Sustainability of construction works. Environmental product declarations. Methodology for selection and use of generic data.
- ✓ DAPHabitat. General Program Instructions of DAPHabitat, V. 1.1, 2015.
- ✓ DAP Habitat. PCR Basic model products and construction services according to EN 15804: 2012 + A1: 2013,
 V. 2.1, 2020.
- ✓ DAP Habitat. PCR Wall coverings. V. 1.1; 2020.
- ✓ DAP Habitat. PCR Floor coverings. V. 1.1; 2020.
- ✓ EN 15804:2012+A1:2013 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products.
- ✓ EN ISO 14020:2005 Environmental labels and declarations General principles (EN ISO 14020:2005).
- ✓ EN ISO 14021:2016 Environmental labels and declarations Self declarations (Type II environmental declarations).
- ✓ EN ISO 14024:2018 Environmental labels and declarations Type I environmental declarations Principles and procedures.
- ✓ EN ISO 14050:2010 Environmental management Vocabulary.
- ✓ ISO 14025:2009 Environmental labels and declarations Type III environmental declarations Principles and procedures.
- ✓ ISO 14040:2008 Environmental management Life cycle assessment Principles and framework.
- ✓ EN ISO 14044:2006/A1:2018 Environmental management Life cycle assessment Requirements and guidelines.
- ✓ ISO 21930:2017 Sustainability in building construction Environmental declaration of building products.
- ✓ Tong, C., "Introduction to materials for advanced energy systems", Springer, 2019, doi: 10.1007/978-3-319-98002-7.
- ✓ Tsiamis, D. A.; Castaldi, M. J.. 2016. Determining accurate heating values of non-recycled plastics (NRP). Earth Engineering Center | City College City University of New York.
- ✓ Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., 2016. The Ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218–1230.